Performance of Small High Speed Cryogenic Pumps

Author:

Kamijo Kenjiro1,Hirata Kunio2

Affiliation:

1. National Aerospace Laboratory of Japan, Ohgawara, Miyagi 989-12, Japan

2. National Space Development Agency of Japan, Minatoku, Tokyo, Japan

Abstract

Several small cryogenic pumps for a liquid rocket engine have been made and tested. These pumps have a small impeller and are characterized by high speed and high head. The main design characteristics of these pumps are as follows: stage specific speeds of from 0.0319 to 0.0766, flow rates from 0.016 to 0.0525 m3/s, pressure rises from 4.9 to 26 MPa, rotational speeds from 16,500 to 80,000 rpm, and impeller diameters from 0.083 to 0.146 m. These pumps, when tested, showed higher efficiency even in the range of small stage specific speeds than any previously reported data on other pumps. This tendency was particularly striking with the two-stage pumps. With regard to pump efficiency measurement, it was made clear that adiabatic efficiency was utilizable for the present cryogenic pumps. The relationship between the adiabatic efficiency and ordinary efficiency was also confirmed by a brief calculation and test results.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Verification of Electric Pump for Small LOX/Methane Rocket Engine;International Journal of Aeronautical and Space Sciences;2023-03-05

2. System performance tests and start transient analysis of a liquid rocket engine turbopump;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2012-10-23

3. Cryogenic Performance Test of LOX Turbopump in Liquid Nitrogen;Transactions of the Korean Society of Mechanical Engineers B;2010-04-01

4. Axial thrust behavior in LOX-pump of rocket engine;Journal of Propulsion and Power;1994-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3