System performance tests and start transient analysis of a liquid rocket engine turbopump

Author:

Hong Soon-Sam1,Kim Dae-Jin1,Kim Jin-Sun1,Kim Jinhan1

Affiliation:

1. Korea Aerospace Research Institute, Daejeon, Korea

Abstract

This article describes a series of development tests of a turbopump, which can be applied to a gas generator cycle rocket engine with liquid oxygen and kerosene propellants. A turbine drives both an oxidizer pump and a fuel pump in the turbopump assembly. In the tests, liquid oxygen and kerosene are supplied to the oxidizer pump and the fuel pump, respectively, while either cold hydrogen gas or hot gas from the gas generator is supplied to the turbine. The turbopump is operated reliably at both on-design and off-design conditions, meeting all the performance requirements. The test results are compared with those of the turbopump component tests, where model fluids are used, that is, water for the oxidizer pump and the fuel pump, and cold air for the turbine. The turbopump tests results agree well with the turbopump component test results. The speed buildup of the turbopump at start period is calculated when pressurized gas is used to initially spin the turbine. A differential equation which represents the torque balance between the turbine and the pumps is solved. The calculation shows a good agreement with the test result. When the mechanical loss of the turbopump is considered, a better estimation is obtained.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3