Affiliation:
1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Abstract
High-performance pantograph design requires control of pantograph dynamic performance. Many pantograph dynamic models developed to aid in the design process have employed two degrees of freedom, one for the head mass and one for the frame. In this paper, the applicability of these models to symmetric and asymmetric pantograph designs is reviewed. Two degree-of-freedom models have been shown to be appropriate to represent a number of symmetric pantograph designs. To represent the asymmetric designs considered in this paper, an additional degree of freedom representing frame dynamics has been introduced to yield a three degree-of-freedom nonlinear dynamic performance model. The model has been evaluated with experimental data obtained from laboratory dynamic testing of an asymmetric pantograph.
Subject
Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献