Influence of Unbalance and Differential Pressure on the Stability of Vertical Rotor-Seal System

Author:

Kimura Shogo1ORCID,Inoue Tsuyoshi1,Taura Hiroo2,Heya Akira1

Affiliation:

1. Department of Mechanical Systems Engineering, Nagoya University , Furo-cho, Chikusa, Nagoya, Aichi 464-8603, Japan

2. Department of Mechanical Engineering, Kindai University , 577-8502 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan

Abstract

Abstract The rotordynamic (RD) fluid force generated in fluid elements such as seals in turbomachinery affects the stability of turbomachinery and causes shaft vibrations. Various studies have been conducted to clarify the effects of seals on the stability of rotor systems. Many studies have investigated the rotor dynamics of horizontal rotating shaft systems, considering the RD fluid force generated in the seals, and in these studies, the stability of horizontal rotating shaft systems has been assessed via eigenvalue analysis using RD coefficients. However, few studies have analyzed vertical rotating shaft systems. The dynamic behavior of vertical rotating shafts differs significantly from that of horizontal rotating shafts because the weight of the rotor does not act on the seal in a vertical rotating shaft system. Vertical rotating shaft systems are generally prone to instability because of the fluid film whirl, and the amplitude of the shaft whirl tends to be large. When the amplitude is large, the RD fluid force cannot be linearized around the equilibrium point using RD coefficients. Therefore, destabilization and stabilization phenomena that appear in vertical rotating shaft systems cannot be predicted using eigenvalue analysis. Fluid–structure interaction (FSI) analysis that considers the interaction between the shaft vibration and the RD fluid force generated in seals is required to predict such phenomena. This study used FSI analysis to investigate the effects of unbalance and differential pressure on the stability of a vertical rotating shaft system subjected to RD fluid force generated in the seal.

Funder

Japan Society for the Promotion of Science

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3