Acquisition and Processing Considerations for Infrared Images of Rotating Turbine Blades

Author:

Knisely Brian F.1,Berdanier Reid A.1,Thole Karen A.2,Haldeman Charles W.3,Markham James R.4,Cosgrove Joseph E.4,Carlson Andrew E.4,Scire James J.5

Affiliation:

1. Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16801

2. Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802

3. Pratt & Whitney, East Hartford, CT 06108

4. Advanced Fuel Research, Inc., East Hartford, CT 06108

5. New York Institute of Technology, Old Westbury, NY 11568

Abstract

Abstract As designers aim to increase efficiency in gas turbines for aircraft propulsion and power generation, spatially resolved experimental measurements are needed to validate computational models and compare improvement gains of new cooling designs. Infrared (IR) thermography is one such method for obtaining spatially resolved temperature measurements. As technological advances in thermal detectors enable faster integration times, surface temperature measurements of rotating turbine blades become possible to capture including the smallest features. This paper outlines opportunities enabled by the latest IR detector technologies for capturing spatially resolved rotating blade temperatures, while also addressing some of the challenges of implementing IR for turbine rigs such as the one in the Steady Thermal Aero Research Turbine (START) Laboratory. This paper documents critical steps in achieving accurate measurements including calibration, integration times, spatial noise, and motion blur. From these results, recommendations are provided for achieving accurate IR measurements collected in a rotating turbine facility to study film cooling.

Funder

U.S. Department of Energy

Publisher

ASME International

Subject

Mechanical Engineering

Reference37 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3