Effects of Part-to-Part Flow Variations on Overall Effectiveness and Life of Rotating Turbine Blades

Author:

Knisely Brian F.1,Berdanier Reid A.1,Wagner Joel H.1,Thole Karen A.1,Arisi Allan N.2,Haldeman Charles W.2

Affiliation:

1. The Pennsylvania State University Department of Mechanical Engineering, , University Park, PA 16802

2. Pratt & Whitney , East Hartford, CT 06118

Abstract

Abstract As firing temperatures in gas turbine engines continue to increase to achieve high efficiencies, components in the main gas path must be protected with cooling flows to ensure lifing targets are met. Manufacturing variations, however, influence the performance and life characteristics of components with the same nominal design. This study presents blade flow and overall cooling effectiveness measurements for nine true-scale, aero engine turbine blades with realistic manufacturing variations. Flow measurements were made through each blade at a fixed pressure ratio to determine flow variability between holes and between blades. Infrared thermography was used to capture spatially-resolved temperature measurements reported as overall effectiveness on the same nine blades under high-speed rotating conditions at the Steady Thermal Aero Research Turbine Laboratory. Thermal performance was correlated with blade flow performance indicating substantial blade-to-blade variations resulting from manufacturing differences. Measurements also indicated wide variations in cooling jet trajectories as well as overall cooling effectiveness. Finally, the observed blade-to-blade variations in effectiveness were scaled to engine conditions with lifing estimates showing some blades would be expected to last only half as long as others due to manufacturing variability.

Funder

Office of Fossil Energy

Publisher

ASME International

Subject

Mechanical Engineering

Reference19 articles.

1. The Effects of Manufacturing Tolerances on Gas Turbine Cooling;Bunker;ASME J. Turbomach.,2009

2. Design for Variation;Reinman;Qual. Eng.,2012

3. Heavy-Duty Gas Turbine Operating and Maintenance Considerations;Balevic,2004

4. Gas Turbine Film Cooling;Bogard;J. Propuls. Power,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3