Low Salinity Hot Water Injection With Addition of Nanoparticles for Enhancing Heavy Oil Recovery

Author:

Ding Yanan1,Zheng Sixu2,Meng Xiaoyan1,Yang Daoyong3

Affiliation:

1. Petroleum Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada

2. Department of Chemical and Petroleum Engineering, Schulich School of Engineering, Calgary, AB T2N 1N4, Canada

3. Petroleum Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada e-mail:

Abstract

In this study, a novel technique of low salinity hot water (LSHW) injection with addition of nanoparticles has been developed to examine the synergistic effects of thermal energy, low salinity water (LSW) flooding, and nanoparticles for enhancing heavy oil recovery, while optimizing the operating parameters for such a hybrid enhanced oil recovery (EOR) method. Experimentally, one-dimensional displacement experiments under different temperatures (17 °C, 45 °C, and 70 °C) and pressures (about 2000–4700 kPa) have been performed, while two types of nanoparticles (i.e., SiO2 and Al2O3) are, respectively, examined as the additive in the LSW. The performance of LSW injection with and without nanoparticles at various temperatures is evaluated, allowing optimization of the timing to initiate LSW injection. The corresponding initial oil saturation, production rate, water cut, ultimate oil recovery, and residual oil saturation profile after each flooding process are continuously monitored and measured under various operating conditions. Compared to conventional water injection, the LSW injection is found to effectively improve heavy oil recovery by 2.4–7.2% as an EOR technique in the presence of nanoparticles. Also, the addition of nanoparticles into the LSHW can promote synergistic effect of thermal energy, wettability alteration, and reduction of interfacial tension (IFT), which improves displacement efficiency and thus enhances oil recovery. It has been experimentally demonstrated that such LSHW injection with the addition of nanoparticles can be optimized to greatly improve oil recovery up to 40.2% in heavy oil reservoirs with low energy consumption. Theoretically, numerical simulation for the different flooding scenarios has been performed to capture the underlying recovery mechanisms by history matching the experimental measurements. It is observed from the tuned relative permeability curves that both LSW and the addition of nanoparticles in LSW are capable of altering the sand surface to more water wet, which confirms wettability alteration as an important EOR mechanism for the application of LSW and nanoparticles in heavy oil recovery in addition to IFT reduction.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3