An Overview of the Nano-Enhanced Phase Change Materials for Energy Harvesting and Conversion

Author:

Pereira José1ORCID,Moita Ana1ORCID,Moreira António1ORCID

Affiliation:

1. IN+ Center for Innovation, Technology and Policy Research, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal

Abstract

This review offers a critical survey of the published studies concerning nano-enhanced phase change materials to be applied in energy harvesting and conversion. Also, the main thermophysical characteristics of nano-enhanced phase change materials are discussed in detail. In addition, we carried out an analysis of the thermophysical properties of these types of materials as well as of some specific characteristics like the phase change duration and the phase change temperature. Moreover, the fundamental improving techniques for the phase change materials for solar thermal applications are described in detail, including the use of nano-enhanced phase change materials, foam skeleton-reinforced phase change materials, phase change materials with extended surfaces, and the inclusion of high-thermal-conductivity nanoparticles in nano-enhanced phase change materials, among others. Those improvement techniques can increase the thermal conductivity of the systems by up to 100%. Furthermore, it is also reported that the exploration of phase change materials enhances the overall efficiency of solar thermal energy storage systems and photovoltaic-nano-enhanced phase change materials systems. Finally, the main limitations and guidelines for future research in the field of nano-enhanced phase change materials are summarized.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3