Stability Analysis of a Droplet Pinned in Channel Under Gravity

Author:

Hekiri Haider1,Hawa Takumi1

Affiliation:

1. School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019 e-mail:

Abstract

The stability of a two-dimensional, incompressible droplet, with two cylindrical-caps that is held in a channel under gravity, is investigated through the development of an analytical model based on the Young–Laplace relationship. The droplet state is measured by the location of its center of mass, where the center of mass is derived analytically by assuming a circular shape for the droplet cap. The derived analytical expressions are validated through the use of computational fluid dynamics (CFD). When a droplet is suspended under no gravity conditions, there is a critical droplet volume Vcr where asymmetric droplet states appear in addition to the basic symmetric states when the drop volume V > Vcr. When V < Vcr, the symmetric droplet states are stable, and when V > Vcr, the symmetric states are unstable and the asymmetric states are stable. With gravity, the pitchfork bifurcation diagram of the droplet system changes into two separate branches of equilibrium states: The primary branch describes a gradual and stable change of the droplet from a symmetric to asymmetric state as the droplet volume is increased. The secondary branch appears at a modified critical volume Vmcr and describes two additional asymmetric states when V > Vmcr. The large-amplitude states along the secondary branch are stable whereas the small-amplitude states are unstable. There exists a maximum volume on each of the primary and secondary branch where the droplet no longer sustains its weight and where the maximum volume on the primary branch is smaller than the maximum volume on the secondary branch. There is a critical value for the strength of the gravity force, relative to the capillary force, that provides the condition at which a droplet state exists only at the primary branch; the secondary branch is unstable. Analytical solutions show good agreement with CFD results as long as the circular shape assumption of the droplet cap is approximately valid.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3