Capillary dynamics of coupled spherical-cap droplets

Author:

THEISEN E. A.,VOGEL M. J.,LÓPEZ C. A.,HIRSA A. H.,STEEN P. H.

Abstract

Centre-of-mass motions of two coupled spherical-cap droplets are considered. A model with surface tension and inertia that accounts for finite-amplitude deformations is derived in closed form. Total droplet volume λ and half-length L of the tube that connects the droplets are the control parameters. The model dynamics reside in the phase-plane. For lens-like droplets λ < 1, and for any L there is a single steady state about which the droplets vibrate with limit-cycle behaviour. For λ>1, the symmetric state loses stability (saddle point) and new antisymmetric steady states arise about which limit-cycle oscillations occur. These mirror states – big-droplet up or big-droplet down – are also stable. In addition, there are large finite-amplitude ‘looping’ oscillations corresponding to limit cycles that enclose both steady states in the phase-plane. All three kinds of oscillations are documented in an experiment that sets the system into motion by ‘kicking’ one of the droplets with a prescribed pressure-pulse. Model predictions for frequencies are consistent with observations. Small-amplitude predictions are placed in the wider context of constrained Rayleigh vibrations. A model extension to account for the small but non-negligible influence of viscosity is also presented.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Manipulation of liquid transport and droplet switch using light-actuated surface tension;Colloids and Surfaces A: Physicochemical and Engineering Aspects;2024-04

2. Oscillations of a ring-constrained charged drop;Journal of Fluid Mechanics;2021-06-30

3. Volume scavenging of networked droplets;Physica D: Nonlinear Phenomena;2019-07

4. Particle squeezing in narrow confinements;Microfluidics and Nanofluidics;2018-10

5. Natural vibration of an aqueous pendant drop;Experimental Thermal and Fluid Science;2018-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3