Loss Mechanisms and Flow Control for Improved Efficiency of a Centrifugal Compressor at High Inlet Prewhirl

Author:

Zheng Xinqian1,Huang Qiangqiang2,Liu Anxiong2

Affiliation:

1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China e-mail:

2. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China

Abstract

Variable inlet prewhirl is an effective way to suppress compressor flow instability. Compressors usually employ a high degree of positive inlet prewhirl to shift the surge line in the performance map to a lower mass flow region. However, the efficiency of a compressor at high inlet prewhirl is far lower than that at zero or low prewhirl. This paper investigates the performances of a centrifugal compressor with different prewhirls, discusses the mechanisms which are responsible for the production of extra loss induced by high inlet prewhirl and develops flow control methods to improve efficiency at high inlet prewhirl. The approach combines steady three-dimensional Reynolds average Navier–Stokes (RANS) simulations with theoretical analysis and modeling. In order to make the study universal to various applications with inlet prewhirl, the inlet prewhirl was imposed by modifying the velocity direction of inlet boundary condition. Simulation results show that the peak efficiency at high inlet prewhirl is reduced by over 7.6% points compared with that at zero prewhirl. The extra loss occurs upstream and downstream of the impeller. Severe flow separation, which reduces efficiency by 2.3% points, was found near the inlet hub. High inlet prewhirl works like a centrifuge gathering low-kinetic-energy fluid to hub, which induces the separation. A dimensionless parameter C was defined to measure the centrifugal trend of gas and indicate the flow separation near the inlet hub. As for the extra loss which is produced downstream of the impeller, the flow mismatch of impeller and diffuser at high prewhirl causes a violent backflow near the diffuser vanes' leading edges. An analytical model was built to predict diffuser choking mass flow. It proves that the diffuser has already operated unstably at high prewhirl. Based on these two loss mechanisms, the hub curve and the diffuser stager angle were modified and adjusted, respectively, for higher efficiency at high prewhirl. The efficiency improvement benefited from the modification of the hub is 1.1% points, and that benefited from the combined optimization is 2.4% points. During optimizing, constant distribution of inlet prewhirl was found to be another factor for inducing reverse flow at the leading edge of the impeller blade root, which turned out being blamed on the misalignment of the swirl angle and the blade angle.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3