A Prediction Method for Planar Diffuser Flows

Author:

Bardina J.1,Lyrio A.1,Kline S. J.1,Ferziger J. H.1,Johnston J. P.1

Affiliation:

1. Heat Transfer and Turbulence Mechanics Group, Thermosciences Division, Department of Mechanical Engineering, Stanford University, Stanford, Calif. 94305

Abstract

A method is presented for computation of performance of two-dimensional (planar) diffusers with steady turbulent inflow of an incompressible fluid. Previous methods can predict one regime of flow. The present method gives accurate predictions covering three flow regimes: unstalled flow, transitory stall, and fully developed stall. The method is a considerable extension of the procedure given by Ghose and Kline [5]; it also uses some ideas from the method for fully stalled flows given by Woolley and Kline [4]. The flow model is zonal and steady. It uses a one-dimensional flow model for the potential core. A momentum integral equation and an entrainment equation are employed for the boundary layer zone. Simultaneous solution is employed to model the different zones where the flow is separating or separated. Improved correlations of flow detachment and of the boundary layer flow state approaching detachment are presented as part of the work and employed in the computations. These will be reported more fully in a separate paper. This model is too simple for the full representation of the physics of transitory stall, which is not symmetric, steady, or one-dimensional in the core. Despite this, the main features of the mean flow, including wall pressure as a function of streamwise location, are accurately represented with very modest computation times, typically tenths of a second on an IBM 3033. The results again indicate that the key features in modeling separated flows are: • correct representation of blockage of shear layers and stalled zones, • adequate modeling of the interaction of potential and viscous zones.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3