A Numerical Study on the Flow Mechanism of Performance Improvement of a Wide-Angle Diffuser by Inserting a Short Splitter Vane

Author:

Meng Xu,Zuo Zhigang,Nishi Michihiro,Liu Shuhong

Abstract

Usage of a wide-angle diffuser may result in unfavorable separated flow and a significant diffuser loss. To improve the performance of the diffusers, inserting short splitter vanes is known as a useful method that has been demonstrated experimentally. Regarding the role of the vane in the diffuser flow, Senoo & Nishi (1977) qualitatively explained that the lift force acting on the vane should be a key factor. However, its quantitative verification remains since then. To challenge this issue, numerical simulations of incompressible flow in a wide angle of 28° two-dimensional diffuser with and without a short splitter vane were conducted in the present study. An improvement of pressure-recovery by the vane and oscillatory flows in the diffuser are reasonably reproduced from comparison with the experimental results made by Cochran & Kline (1958). It is also found that the lift force acting on the vane varies periodically in an opposite phase with the detachment point moved back and forth on a diverging wall, since one vane is not sufficient to fully suppress the flow separation that occurred on the wall and the incoming main-flow shifts toward the other diverging wall in the diffuser. Thus, as a role of splitter vane in the diffuser, “the lift force of the vane is a key factor” may be quantitatively verified from the present numerical simulation. Further, it is confirmed by the local loss analysis that the turbulent kinetic energy production observed in mixing layers contributes most of the loss in the diffuser. Consequently, the present numerical technique may be usable to investigate the flow character in a diffuser with splitter vanes at a design stage.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on the Performance of a Novel Air-bleeding Aerodynamic Combustor Diffuser;Journal of Applied Fluid Mechanics;2024-10-01

2. Methods for increasing the energy efficiency of fan systems using wide-angle plane diffusers with splitter vanes;IOP Conference Series: Materials Science and Engineering;2023-09-01

3. A review on investigation of drag associated with passenger car outer body and aerodynamic drag reduction using different diffuser model;PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON FRONTIER OF DIGITAL TECHNOLOGY TOWARDS A SUSTAINABLE SOCIETY;2023

4. Structure and arrangement of perforated plates for uniform flow distribution in an electrostatic precipitator;Journal of the Air & Waste Management Association;2020-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3