Compressible Large Eddy Simulation of a Francis Turbine During Speed-No-Load: Rotor Stator Interaction and Inception of a Vortical Flow

Author:

Trivedi Chirag1

Affiliation:

1. Mem. ASME Waterpower Laboratory, Faculty of Engineering, Department of Energy and Process Engineering, NTNU—Norwegian University of Science and Technology, Trondheim 7491, Norway e-mail:

Abstract

This work investigates the unsteady pressure fluctuations and inception of vortical flow in a hydraulic turbine during speed-no-load conditions. At speed-no-load (SNL), the available hydraulic energy dissipates to the blades without producing an effective torque. This results in high-amplitude pressure loading and fatigue development, which take a toll on a machine's operating life. The focus of the present study is to experimentally measure and numerically characterize time-dependent pressure amplitudes in the vaneless space, runner and draft tube of a model Francis turbine. To this end, ten pressure sensors, including four miniature sensors mounted in the runner, were integrated into a turbine. The numerical model consists of the entire turbine including Labyrinth seals. Compressible flow was considered for the numerical study to account for the effect of flow compressibility and the reflection of pressure waves. The results clearly showed that the vortical flow in the blade passages induces high-amplitude stochastic fluctuations. A distinct flow pattern in the turbine runner was found. The flow near the blade suction side close to the crown was more chaotic and reversible (pumping), whereas the flow on the blade pressure side close to the band was accelerating (turbine) and directed toward the outlet. Flow separation from the blade leading edge created a vortical flow, which broke up into four parts as it traveled further downstream and created high-energy turbulent eddies. The source of reversible flow was found at the draft tube elbow, where the flow in the center core region moves toward the runner cone. The vortical region located at the inner radius of the elbow gives momentum to the wall-attached flow and is pushed toward the outlet, whereas the flow at the outer radius is pushed toward the runner. The cycle repeats at a frequency of 22.3 Hz, which is four times the runner rotational speed.

Funder

Norges Forskningsråd

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3