Influence Analysis of Impeller-Guide Vane Matching on Energy and Pressure Pulsation in a Tubular Pump Device

Author:

Abstract

Tubular pump devices offer advantages such as low hydraulic losses, a simple structure, and easy maintenance. They find extensive application in areas such as irrigation, flood control, and water diversion. The performance and security of the pump are directly impacted by the contact between the impeller and guide vane. The matching relationship between the number of impeller blades and guide vanes significantly influences this interaction in tubular pump devices. To explore this impact, a Very-Large-Eddy Simulation turbulence model was employed to simulate the 3D flow fields of six different number matching relationships in a shaft tubular pump device. The analysis focused on the energy performance of the different schemes, the flow distribution of the guide vanes, and the velocity circulation at the guide vanes’ outlet. Entropy theory and energy gradient theory were employed to understand how the number matching relationship influences energy performance. Additionally, pressure pulsations were analyzed at the impeller and guide vanes for different matching configurations. The results indicate that although increasing the number of impeller blades can lead to higher water circulation, increased energy, and potentially unstable water flow, an increase in impeller blades number results in improved flow distribution in each guide vane groove, leading to an overall enhancement in the efficiency of the pump device. Similarly, increasing the number of guide vanes may increase the non-uniformity of the guide vane flow rate, but it also enhances the ability of the guide vanes to regulate water circulation and recover energy, thereby benefiting the overall efficiency.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3