Flow Physics and Profiling of Recessed Blade Tips: Impact on Performance and Heat Load

Author:

Mischo Bob1,Behr Thomas1,Abhari Reza S.1

Affiliation:

1. Turbomachinery Laboratory, Swiss Federal Institute of Technology, CH-8092 Zürich, Switzerland

Abstract

In axial turbine, the tip clearance flow occurring in rotor blade rows is responsible for about one-third of the aerodynamic losses in the blade row and in many cases is the limiting factor for the blade lifetime. The tip leakage vortex forms when the leaking fluid crosses the gap between the rotor blade tip and the casing from pressure to suction side and rolls up into a vortex on the blade suction side. The flow through the tip gap is both of high velocity and of high temperature, with the heat transfer to the blade from the hot fluid being very high in the blade tip area. In order to avoid blade tip burnout and a failure of the machine, blade tip cooling is commonly used. This paper presents the physical study and an improved design of a recessed blade tip for a highly loaded axial turbine rotor blade with application in high pressure axial turbines in aero engine or power generation. With use of three-dimensional computational fluid dynamics (CFD), the flow field near the tip of the blade for different shapes of the recess cavities is investigated. Through better understanding and control of cavity vortical structures, an improved design is presented and its differences from the generic flat tip blade are highlighted. It is observed that by an appropriate profiling of the recess shape, the total tip heat transfer Nusselt number was significantly reduced, being 15% lower than the flat tip and 7% lower than the base line recess shape. Experimental results also showed an overall improvement of 0.2% in the one-and-a-half-stage turbine total efficiency with the improved recess design compared to the flat tip case. The CFD analysis conducted on single rotor row configurations predicted a 0.38% total efficiency increase for the rotor equipped with the new recess design compared to the flat tip rotor.

Publisher

ASME International

Subject

Mechanical Engineering

Reference18 articles.

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3