Affiliation:
1. Luleå University of Technology Division of Energy Engineering, , Luleå S-971 87 , Sweden
2. Research Institutes of Sweden (RISE) , Industrigatan 1, Piteå 941 38 , Sweden
Abstract
AbstractThis paper assesses the validity of the Two-Step, One-Way (TSOW) coupled method for computational fluid dynamics, which splits a complicated geometry into an upstream and a downstream part. The problem is solved in two steps: first, the upstream part using approximate downstream boundary conditions, followed by a solution of the downstream flow where the inlet boundary conditions are extracted from the upstream solution. The method is based on two assumptions: first, the solution for the upstream part should be identical in the common domain to a complete solution. Second, the solution for the downstream part should be identical in the common domain to a complete solution. The resulting agreement between the upstream solution and the full solution was excellent, except in the vicinity of the outflow boundary. For the assessment of the second assumption, the downstream flow was simulated with two sets of boundary conditions, one that was extracted from the full simulation, and one that came from the upstream part solution. The two solutions in the downstream geometry with slightly different boundary conditions agreed excellently with each other but exhibited small differences from the full solution. Overall, the difference to the full solution is judged to be acceptable for many engineering design situations. The solution time for the TSOW method was about 23 h faster than the full solution, which took about 85 h on the same hardware. For additional design iterations, where the same upstream geometry can be used, a 30-h gain would be obtained for each step.
Reference22 articles.
1. Burman, J. , 2003, “Geometry Parameterisation and Response Surface-Based Shape Optimisation of Aero-Engine Compressors,” PhD dissertation, Luleå University of Technology, Luleå, Sweden.
2. Uncertainty in Aspiration Efficiency Estimates From Torso Simplifications in Computational Fluid Dynamics Simulations;Anderson;Ann. Occup. Hyg.,2012
3. CFD Simulations of Wind Loads on a Container Ship: Validation and Impact of Geometrical Simplifications;Janssen;J. Wind Eng. Ind. Aerodyn.,2017
4. Characterizing the Impact of Geometric Simplification on Large Woody Debris Using CFD;Allen;Int. J. Hydraul. Eng.,2012
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献