LES of Biomass Syngas Combustion in a Swirl Stabilised Burner: Model Validation and Predictions

Author:

Papafilippou Nikolaos,Pignatelli Francesco,Subash Arman Ahamed,Chishty Muhammad Aqib,Gebart Rikard

Abstract

AbstractIn this work, numerical investigations were performed using large eddy simulations and validated against detailed measurements in the CeCOST swirl stabilised burner. Both cold and reactive flow have been studied and the model has shown a good agreement with experiments. The verification of the model was done using the LES index of quality and a single grid estimator. The cold flow simulations predicted results closely to experiments setting baseline for the reactive simulations. Coherent structures like the vortex rope above the swirler and a precessing vortex core in the combustion chamber were identified. The reactive conditions were modelled with the Flamelet generated manifold and artificially thickened flame models. Simulations were performed for an experimental syngas composition from black liquor gasification at three different CO2 dilution levels. Three different Reynolds numbers were investigated with the model matching closely to experimentally detected 2D flow field and OH for the most CO2 diluted mixture. It was found that the opening angles of the flames differ by a maximum of 13% between experiments and simulations. The most diluted fuel investigated experienced a liftoff distance of 23.5 mm at the Re 25 k. This was also the highest liftoff distance experienced in this cohort of fuels. The same fuel also proved to have the thickest flame annulus at 78.5 mm. Overall, in cases with no experimental data available the predictions made by the model follow the same trends which hints its applicability to higher Re cases.

Funder

Energimyndigheten

Lulea University of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3