Thermal and Non-Newtonian Numerical Analyses for Starved EHL Line Contacts

Author:

Yang P.1,Wang J.2,Kaneta M.2

Affiliation:

1. School of Mechanical Engineering, Qingdao Technological University, Qingdao 266033, China

2. Department of Mechanical and Control Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan

Abstract

This paper focuses on the mechanism of starvation and the thermal and non-Newtonian behavior of starved elastohydrodynamic lubrication (EHL) in line contacts. It has been found that for a starved EHL line contact if the position of the oil-air meniscus is given as input parameter, the effective thickness of the available lubricant layers on the solid surfaces can be solved easily from the mass continuity condition, alternatively, if the later is given as input parameter, the former can also be determined easily. Numerical procedures were developed for both situations, and essentially the same solution can be obtained for the same parameters. In order to highlight the importance of the available oil layers, isothermal and Newtonian solutions were obtained first with multi-level techniques. The results show that as the inlet meniscus of the film moves far away from the contact the effective thickness of the oil layers upstream the meniscus gently reaches a certain value. This means very thin layers (around 1μm in thickness) of available lubricant films on the solid surfaces, provided the effective thickness is equal to or larger than this limitation, are enough to fill the gap downstream the meniscus and makes the contact work under a fully flooded condition. The relation between the inlet meniscus and the effective thickness of the available lubricant layers was further investigated by thermal and non-Newtonian solutions. For these solutions the lubricant was assumed to be a Ree-Eyring fluid. The pressures, film profiles and temperatures under fully flooded and starved conditions were obtained with the numerical technique developed previously. The traction coefficient of the starved contact is found to be larger than that of the fully flooded contact, the temperature in the starved EHL film, however, is found to be lower than the fully flooded contact. Some non-Newtonian results were compared with the corresponding Newtonian results.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference23 articles.

1. Optical Analysis of Ball Bearing Starvation;Wedeven;ASME J. Lubr. Technol.

2. Cross Flow in a Starved EHD Contact;Kingsbury;ASLE Trans.

3. Isothermal Elastohydrodynamic Lubrication of Point Contacts, Part IV—Starvation Results;Hamrock;ASME J. Lubr. Technol.

4. Film Thickness in Starved EHL Point Contacts;Chevalier;ASME J. Tribol.

5. Contact Dynamics in Starved Elastohydrodynamic Lubrication;Wijnant

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3