Laminar, Gravitationally Driven Flow of a Thin Film on a Curved Wall

Author:

Ruschak Kenneth J.1,Weinstein Steven J.1

Affiliation:

1. Manufacturing Research and Engineering Organization, Eastman Kodak Company, Rochester, NY 14652-3701

Abstract

Gravitationally driven flow of a thin film down an arbitrarily curved wall is analyzed for moderate Reynolds number by generalizing equations previously developed for flow on a planar wall. In the analysis, the ratio of the characteristic film thickness to the characteristic dimension of the wall is presumed small, and terms estimated to be first order in this parameter are retained. Partial differential equations are reduced to ordinary differential equations by the method of von Ka´rma´n and Pohlhausen; namely, an expression for the velocity profile is assumed, and the equation for conservation of linear momentum is averaged across the film. The assumed velocity profile changes shape in the flow direction because a self-similar profile, one of fixed shape but variable magnitude, leads to an equation that typically fails under critical conditions. The resulting equations for film thickness routinely accommodate subcritical-to-supercritical transitions and supercritical-to-subcritical transitions as classified by the underlying wave propagation. The more severe supercritical-to-subcritical transition is manifested by a standing wave where the film noticeably thickens; this standing wave is a simple analogue of a hydraulic jump. Predictions of the film-thickness profile and variations in the velocity profile compare favorably with those from the Navier-Stokes equation obtained by the finite element method.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3