The granular Blasius problem

Author:

Tsang Jonathan Michael FoonlanORCID,Dalziel Stuart B.ORCID,Vriend N. M.ORCID

Abstract

We consider the steady flow of a granular current over a uniformly sloped surface that is smooth upstream (allowing slip for $x<0$) but rough downstream (imposing a no-slip condition on $x>0$), with a sharp transition at $x=0$. This problem is similar to the classical Blasius problem, which considers the growth of a boundary layer over a flat plate in a Newtonian fluid that is subject to a similar step change in boundary conditions. Our discrete particle model simulations show that a comparable boundary-layer phenomenon occurs for the granular problem: the effects of basal roughness are initially localised at the base but gradually spread throughout the depth of the current. A rheological model can be used to investigate the changing internal velocity profile. The boundary layer is a region of high shear rate and therefore high inertial number $I$; its dynamics is governed by the asymptotic behaviour of the granular rheology for high values of the inertial number. The $\unicode[STIX]{x1D707}(I)$ rheology (Jop et al., Nature, vol. 441 (7094), 2006, pp. 727–730) asserts that $\text{d}\unicode[STIX]{x1D707}/\text{d}I=O(1/I^{2})$ as $I\rightarrow \infty$, but current experimental evidence is insufficient to confirm this. We show that this rheology does not admit a self-similar boundary layer, but that there exist generalisations of the $\unicode[STIX]{x1D707}(I)$ rheology, with different dependencies of $\unicode[STIX]{x1D707}(I)$ on $I$, for which such self-similar solutions do exist. These solutions show good quantitative agreement with the results of our discrete particle model simulations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference51 articles.

1. Boundary conditions for high-shear grain flows

2. Boundary-Layer Theory

3. A predictive, size-dependent continuum model for dense granular flows

4. PIV for granular flows

5. Holyoake, A. J. 2011 Rapid granular flows in an inclined chute. PhD thesis, University of Cambridge.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3