Mobility Prediction of Off-Road Ground Vehicles Using a Dynamic Ensemble of NARX Models

Author:

Liu Yixuan1,Barthlow Dakota2,Mourelatos Zissimos P.2,Zeng Jice1,Gorsich David3,Singh Amandeep3,Hu Zhen1

Affiliation:

1. University of Michigan-Dearborn Department of Industrial and Manufacturing Systems Engineering, , 2340 Heinz Prechter Engineering Complex, Dearborn, MI 48128

2. Oakland University, Engineering Center Department of Mechanical Engineering, , Room 402D, 115 Library Drive, Rochester, MI 48309

3. Ground Vehicle Systems Center U.S. Army Combat Capabilities, Development Command, , 6501 E. 11 Mile Road, Warren, MI 48397

Abstract

Abstract Mobility prediction of off-road autonomous ground vehicles (AGV) in uncertain environments is essential for their model-based mission planning, especially in the early design stage. While surrogate modeling methods have been developed to overcome the computational challenge in simulation-based mobility prediction, it is very challenging for a single surrogate model to accurately capture the complicated vehicle dynamics. With a focus on vertical acceleration of an AGV under off-road conditions, this article proposes a surrogate modeling approach for AGV mobility prediction using a dynamic ensemble of nonlinear autoregressive models with exogenous inputs (NARX) over time. Synthetic vehicle mobility data of an AGV are first collected using a limited number of high-fidelity simulations. The data are then partitioned into different segments using a variational Gaussian mixture model to represent different vehicle dynamic behaviors. Based on the partitioned data, multiple surrogate models are constructed under the NARX framework with different numbers of lags. The NARX models are then assembled together dynamically over time to predict the mobility of the AGV under new conditions. A case study demonstrates the advantages of the proposed method over the classical NARX models for AGV mobility prediction.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3