Affiliation:
1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907
Abstract
A complete numerical solution of Newtonian thermal compressible elastohydrodynamic lubrication of rolling/sliding point (circular) contact has been obtained. The multilevel multigrid technique was used to solve the simultaneous system of thermal Reynolds, elasticity and the energy equations with their boundary conditions. The effects of various loads, speeds, and slip conditions on the lubricant temperature, film thickness, and friction force have been investigated. The results indicate that the temperature rise in the contact is significant and thermal effects cannot be neglected.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献