Differential Evolution for the Optimization of DMSO-Free Cryoprotectants: Influence of Control Parameters

Author:

Pi Chia-Hsing1,Dosa Peter I.2,Hubel Allison3

Affiliation:

1. Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455

2. Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414

3. Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, MN 55455

Abstract

Abstract This study presents the influence of control parameters including population (NP) size, mutation factor (F), crossover (Cr), and four types of differential evolution (DE) algorithms including random, best, local-to-best, and local-to-best with self-adaptive (SA) modification for the purpose of optimizing the compositions of dimethylsufloxide (DMSO)-free cryoprotectants. Post-thaw recovery of Jurkat cells cryopreserved with two DMSO-free cryoprotectants at a cooling rate of 1 °C/min displayed a nonlinear, four-dimensional structure with multiple saddle nodes, which was a suitable training model to tune the control parameters and select the most appropriate type of differential evolution algorithm. Self-adaptive modification presented better performance in terms of optimization accuracy and sensitivity of mutation factor and crossover among the four different types of algorithms tested. Specifically, the classical type of differential evolution algorithm exhibited a wide acceptance to mutation factor and crossover. The optimization performance is more sensitive to mutation than crossover and the optimization accuracy is proportional to the population size. Increasing population size also reduces the sensitivity of the algorithm to the value of the mutation factor and crossover. The analysis of optimization accuracy and convergence speed suggests larger population size with F > 0.7 and Cr > 0.3 are well suited for use with cryopreservation optimization purposes. The tuned differential evolution algorithm is validated through finding global maximums of other two DMSO-free cryoprotectant formulation datasets. The results of these studies can be used to help more efficiently determine the optimal composition of multicomponent DMSO-free cryoprotectants in the future.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3