Primary Resonance of Computer Numerical Control Worktable with Clearance and Friction

Author:

Niu Jiangchuan1,Zhao Zhishuang2,Shen Yongjun1,Yang Shaopu1

Affiliation:

1. School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang, China; State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang, China

2. School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang, China

Abstract

Abstract Computer numerical control (CNC) worktable is the most important part of CNC machines. The CNC worktable exhibits complex nonlinear dynamic behaviors in the milling process. The physical model and mathematical model of CNC worktable are presented, where the nonlinear factors such as clearance and friction are considered. The primary resonance of computer numerical control worktable with clearance and friction under harmonic excitation is investigated. The approximate analytical solution of primary resonance is obtained by using the averaging method. The stability condition of the steady-state solution is also exhibited. It is found that the clearance affects the dynamic characteristics of the system in the form of equivalent nonlinear stiffness, and the friction coefficient acts in the form of equivalent nonlinear damping. The correctness of the approximate analytical solutions is verified by comparing the numerical results with the approximate analytical solutions. The approximate analytical solution is in good agreement with its corresponding numerical solution. The effects of clearance and friction on the dynamic characteristics of the system are analyzed in detail. The stick-slip vibration induced by friction is also analyzed by phase portrait at low feed velocity of machine tool. The results can provide a reference for the dynamic analysis of CNC worktable.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3