Determination of Metal/Die Interfacial Heat Transfer Coefficients in Squeeze Casting of Wrought Aluminum Alloy 7075 With Variations in Section Thicknesses and Applied Pressures

Author:

Zhang Xuezhi1,Fang Li1,Hu Henry1,Nie Xueyuan1

Affiliation:

1. Department of Mechanical, Automotive and Material Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada e-mail:

Abstract

Squeeze casting of wrought aluminum 7075 was carried out on a 75-ton hydraulic press. Metal/die interface heat transfer phenomena in squeeze casting of the alloy were investigated. To facilitate experimental measurements, a five-step casting mold was designed for the experiments. The five-step casting consisted of five different section thicknesses of 2, 4, 8, 12, and 20 mm. Squeeze casing experiments were performed under the applied hydraulic pressures of 30, 60, and 90 MPa. Temperatures were measured at the casting surface and at various specific locations inside the die. At each step, thermocouples were placed at 2, 4, and 6 mm away from the inside die face. Based on the measured temperature results, the interfacial heat transfer coefficients (IHTCs) and heat fluxes were determined by solving the one-dimensional transient heat conduction equation with the inverse method. With increasing the casting section thicknesses from 2 to 20 mm, the peak IHTC values varied from 1683.46 W/m2 K to 9473.23 W/m2 K, 2174.78 W/m2 K to 13,494.05 W/m2 K, and 3873.45 W/m2 K to 15,483.01 W/m2 K for the applied hydraulic pressures of 30, 60, and 90 MPa, respectively.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference14 articles.

1. North America Light Vehicle Aluminum Content;Ducker World LLC,2015

2. Optimization of Casting Parameters on an Improved AA6061 Aluminum Alloy for Semi-Solid Die Casting,2010

3. Squeeze Casting: An Overview;J. Mater. Process. Technol.,2000

4. Squeeze Casting of Magnesium Alloys and Their Composites;J. Mater. Sci.,1998

5. Squeeze Casting of High-Strength Aluminum Wrought Alloy AA7010;J. Mater. Process. Technol.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3