Squeeze Cast Mg-Zn Alloys for Bioapplications: Tensile Properties and Microstructure

Author:

Hu Anita1,Nie Xue Yuan1,Hu Henry1

Affiliation:

1. University of Windsor

Abstract

In the past, Mg-Zn alloys prepared by a two-step manufacturing process of casting plus extrusion have been demonstrated to be a good candidate for biodegradable applications. But, studies on fabricating of Mg-Zn alloys with a single step process of squeeze casting capable of producing porosity-free Mg alloys, which can reduce the cost, are limited. In the present work, Zinc (Zn) addition varying from 1.0 up to 10.0 wt. % was introduced into liquid magnesium. The alloyed liquid was squeeze cast under an applied pressure of 90 MPa. The results of mechanical testing on the squeeze cast Mg-Zn alloys shows that Zn is an effective additive for enhancing their mechanical properties, specifically, tensile and yield strengths at room temperature, but reducing the elongation. While the Zn addition rises from 1.0 to 10.0 wt.%, the ultimate tensile and yield strengths increases to 181.0 MPa and 105.0 MPa from 140.7 MPa and 39.3 MPa, while the elongation-to-failure (ef) decreases to 3.7% from 6.2%, respectively. The reveal of the as-cast grain structure by an optical microscope (OM) indicates that the high Zn content reduces grain sizes considerably. The microstructures analyzed by a scanning electron microscope (SEM) with the energy dispersive spectroscopy (EDS) show that the secondary MgZn phase forms once Zn is introduced in sufficient amount. The grain refinement and the massive presence of the secondary MgZn phase at the boundaries of the refined grains should be responsible to the enhancement of the strengths and the reduction in the elongation. The developed pressurized casting without employing secondary manufacturing processes such as extrusion or heat treatment exhibits its advantages to enhance the mechanical properties of the Mg alloys with high Zn content over conventional fabrication processes, since high Zn-containing Mg alloys have a long freezing range and tend to form microshrinkage porosity.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of Design of Process Parameters for Squeeze Casting;Chinese Journal of Mechanical Engineering;2023-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3