Crack Formation in Membrane Electrode Assembly Under Static and Cyclic Loadings

Author:

Kai Yusuke1,Kitayama Yuki1,Omiya Masaki21,Uchiyama Tomoaki1,Kato Manabu1

Affiliation:

1. Toyota Motor Corporation, Susono, Shizuoka, Japan

2. Department of Mechanical Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan

Abstract

The mechanical reliability of membrane electrode assemblies (MEAs) in polymer electrolyte fuel cells (PEFCs) is a major concern for fuel cell vehicles. Hygrothermal cyclic conditions induce mechanical stress in MEAs and cracks form under operating conditions. This paper investigates the failure mechanism of MEAs under several mechanical and environmental conditions with the aim of designing durable PEFCs. We performed static tensile tests and low-cycle fatigue tests on MEAs. During the tensile tests, the temperature and humidity of the test chamber were controlled and surface crack formation of MEAs was observed in situ by a video microscope. Low-cycle fatigue tests were performed at ambient conditions and the number of cycles to crack formation was measured. The results reveal that the temperature and the humidity affect the mechanical properties of MEA. Observations of MEAs during tensile tests reveal that cracks form on the surface of catalyst layers immediately after the MEAs yield. These results indicate that reducing the deformation mismatch between the catalyst layer and the proton exchange membrane is important for suppressing crack formation in MEAs. The results of low-cycle fatigue tests reveal that the fatigue strength of a MEA follows the Coffin–Manson law so that fatigue design of MEAs based on the Coffin–Manson law is possible. This result is valuable for designing durable PEFCs.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3