Study on the Performance Degradation of Membrane Electrode Assembly in Proton Exchange Membrane Fuel Cell Caused by Freeze–Thaw Cycles

Author:

Gan Zhongyu1ORCID,Chen Tao1,Zhang Rufeng1ORCID,Zhang Ruixuan1ORCID

Affiliation:

1. School of Mechanical and Electronic Engineering Wuhan University of Technology Wuhan P. R. China

Abstract

ABSTRACTDurability of membrane electrode assembly (MEA) is a serious problem to be overcome in the commercial development of proton exchange membrane fuel cell (PEMFC). The change in volume due to water–ice conversion has an irreversible effect on the MEA, which affects the performance of PEMFC. For investigating the optimal initial water content of MEA that minimizes the impact on PEMFC performance after freeze–thaw (F/T) cycles, this study first measured the high‐frequency resistance to determine the water content of MEA, and then subjected five MEAs with different water contents to 60 F/T cycles at −20°C to 30°C. The fuel cell output performance of five MEAs was found to be inconsistently degraded by polarization curve tests, with the cells of the two MEAs with the lowest and highest water contents exhibiting the worst output performance. Electrochemical impedance spectroscopy curves proved that the difference in resistance change after F/T cycles is one reason why the cell output performance is degraded differently. Finally, the degradation of cell performance was further explained by cyclic voltammetry. These results indicate that MEA has the best output performance for F/T cycles at an initial water content of 3.0.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3