Analytical Method for Hydrodynamic Force in Finite-Length Tilting-Pad Journal Bearing Including Turbulence Effect

Author:

Jin Yingze1,Yuan Xiaoyang1

Affiliation:

1. Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Abstract To improve the efficiency in nonlinear dynamic calculation of finite-length tilting-pad journal bearings (TPJBs) under dynamic loads, an analytical method for hydrodynamic bearing forces, which considers the turbulence effect, is proposed using the method of separation of variables under the dynamic Gümbel boundary condition. No thermal effects are considered because this method is designed for the low viscosity case. The infinitely long bearing pressure is introduced as the circumferential pressure, and a general solution of the nonhomogeneous Reynolds equation is derived as the axial pressure. The turbulence model of Ng and Pan is characterized by a linear function of film thicknesses. A complete analytical expression of hydrodynamic bearing forces is derived. The analytical simulation shows slight differences and extremely low time expense in lubricating and dynamic performance compared to published data and finite difference method (FDM) simulation. The analytical method could be used to fast evaluate the nonlinear dynamic performance of a TPJB-rotor system in the low viscosity environment, supporting the nonlinear dynamic design of the system.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3