Pivot Stiffness Effect on Transient Dynamic Characteristic of Tilting Pad Journal Bearing-Rotor System Passing through Critical Speed

Author:

Jin Yingze1ORCID,Niu Qiuli1,Qu Yuanpeng1,Yuan Xiaoyang2

Affiliation:

1. Naval Architecture and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China

2. Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Tilting pad journal bearings (TPJBs) are widely applied in the high-speed rotor system whose working speed is higher than its critical speed due to excellent hydrodynamic lubrication and stability. Pivot stiffness is one of the key design parameters of TPJBs compared to other journal bearings and has become particularly important for optimizing the performance of TPJB-rotor systems. In order to improve the vibration and critical characteristics of rotor systems, the transient dynamic characteristic of a TPJB-rotor system passing through the critical speed is investigated considering different pivot stiffness ratios. A time-varying dynamics model of a symmetrical single-disc rotor supported by four-pad TPJBs is established considering constant acceleration conditions and nonlinear hydrodynamic bearing force. The disc vibration characteristic, journal vibration characteristic, pad vibration characteristic, and hydrodynamic bearing force are analyzed by using Bode plot, shaft center orbit, pad phase orbit, waterfall plot, and time history. The results show that the pivot stiffness plays a major role in the suppression of resonance amplitude and working amplitude of a TPJB-rotor system, without changing the frequency characteristic of the system. This study provides a theoretical basis for the pivot stiffness design of TPJBs and the vibration suppression of rotor systems.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3