Affiliation:
1. e-mail: Department of Mechanical Engineering, Southern Methodist University, Dallas, TX 75275
Abstract
Laser micromachining of an aluminum film on a glass substrate is investigated using a time-resolved transmission imaging technique with nanosecond resolution. Micromachining is performed using a 7 ns pulse-width Nd:YAG laser operating at the 1064 nm wavelength for fluences ranging from 2.2 to 14.5 J/cm2. A nitrogen laser-pumped dye laser with a 3 ns pulse-width and 500 nm wavelength is used as a light source for visualizing the transient hole area. The dye laser is incident on the free surface and a CCD camera behind the sample captures the transmitted light. Images are taken from the back of the sample at various time delays with respect to the beginning of the ablation process, allowing the transient hole area to be measured. For low fluences, the hole opening process is delayed long after the laser pulse and there is significant scatter in the data due to weak driving forces for hole opening. However, for fluences at and above 3.5 J/cm2, the starting time of the process converges to a limiting minimum value of 12 ns, independent of laser fluence. At these fluences, the rate of hole opening is rapid, with the major portion of the holes opened within 25 ns. The second stage of the process is slower and lasts between 100 and 200 ns. The rapid hole opening process at high fluences can be attributed to recoil pressure from explosive phase change. Measurements of the transient shock wave position using the imaging apparatus in shadowgraph mode are used to estimate the pressure behind the shock wave. Recoil pressure estimates indicate pressure values over 90 atm at the highest fluence, which decays rapidly with time due to expansion of the ablation plume. The recoil pressure for all fluences above 3.1 J/cm2 is higher than that required for recoil pressure driven flow due to the transition to explosive phase change above this fluence.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献