Affiliation:
1. Georgia Institute of Technology H. Milton Stewart School of Industrial and Systems Engineering, , Atlanta, GA 30332
Abstract
AbstractThe numerical accuracy of finite element analysis (FEA) depends on the number of finite elements used in the discretization of the space, which can be varied using the mesh size. The larger the number of elements, the more accurate the results are. However, the computational cost increases with the number of elements. In current practice, the experimenter chooses a mesh size that is expected to produce a reasonably accurate result, and for which the computer simulation can be completed in a reasonable amount of time. Improvements to this approach have been proposed using multifidelity modeling by choosing two or three mesh sizes. However, mesh size is a continuous parameter, and therefore, multifidelity simulations can be performed easily by choosing a different value for the mesh size for each of the simulations. In this article, we develop a method to optimally find the mesh sizes for each simulation and satisfy the same time constraints as a single or a double mesh size experiment. A range of different mesh sizes used in the proposed method allows one to fit multifidelity models more reliably and predict the outcome when meshes approach infinitesimally small, which is impossible to achieve in actual simulations. We illustrate our approach using an analytical function and a cantilever beam finite element analysis experiment.
Funder
Division of Mathematical Sciences
Sandia National Laboratories
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献