Biomechanical Strain Analysis at the Interface of Brain and Nanowire Electrodes on a Neural Probe

Author:

Zhu Rui1,Huang G. L.1,Yoon Hargsoon2,Smith Courtney S.2,Varadan Vijay K.3

Affiliation:

1. Department of Applied Science, University of Arkansas at Little Rock, 2801 S University Avenue, Little Rock, AR 72204-1099; Department of System Engineering, University of Arkansas at Little Rock, 2801 S University Avenue, Little Rock, AR 72204-1099

2. Department of Engineering, Norfolk State University, 700 Park Avenue, Norfolk, VA 23504

3. Department of Electrical Engineering, University of Arkansas, 700 Research Center Boulevard, Fayetteville, AR 72701; Department of Neurosurgery, College of Medicine, Pennsylvania State Hershey Medical Center, 500 University Drive, Hershey, PA 17033

Abstract

The viability of neural probes with microelectrodes for neural recording and stimulation in the brain is important for the development of neuroprosthetic devices. Vertically aligned nanowire microelectrode arrays can significantly enhance the capabilities of neuroprosthetic devices. However, when they are implanted into the brain, micromotion and mechanical stress around the neural probe may cause tissue damage and reactive immune response, which may degrade recording signals from neurons. In this research, a finite-element model of the nanowire microelectrode and brain tissue was developed. A rigid body method was provided, and the simulation efficiency was significantly increased. The interface between the microelectrode and brain tissue was modeled by contact elements. Brain micromotion was mimicked by applying a displacement load to the electrode and fixing the boundaries of the brain region. It was observed that the vertically aligned nanostructures on the electrode of the neural probe do increase the cellular sheath area. The strain field distributions under various physical coupling cases at the interface were analyzed along with different loading effects on the neural electrode.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,General Materials Science,General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3