Affiliation:
1. Department of Mechanical and Transportation Engineering, China University of Petroleum (Beijing), Beijing 102249, China
2. China Oil & Gas Pipeline Network Corporation South China Branch, Guangzhou 510623, China
Abstract
Abstract
In this paper, a new methodology is proposed to realize real-time unsteady flow estimation for a multi-product pipeline system. Integrating transient flow model, adaptive control theory, and adaptive filter, this method is developed to solve the contradiction between the efficiency and accuracy in traditional model-based methods. In terms of improving computational efficiency, the linear flow model based on frequency response and difference transforming is established to replace the traditional nonlinear flow model for transient flow state estimation. To reduce the deviation between actual observations and linear model estimates, we first introduce a model-free adaptive control method as linear compensation of the reduced order unsteady flow state model. To overcome the interference of observation noise, the Kalman filter method is applied to the modified state space model to obtain the one-step-ahead transient flow estimation. The proposed method is applied to the transient flow state estimation of a multi-product pipeline system and compared with the model-based method and two data-driven methods. The proposed method can reduce the deviation of transient flow estimation between the reduced order linear model and the traditional nonlinear model to less than 0.5% under unforeseen conditions and shows strong robustness to noise interference and parameter drift.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Subject
Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献