Development and Comparison of Laplace Domain Models for Nonslender Beams and Application to a Half-Car Model With Flexible Body

Author:

Michael Van Auken R.1

Affiliation:

1. Dynamic Research, Inc., 355 Van Ness Avenue, Suite 200, Torrance, CA 90501 e-mail:

Abstract

Math models of flexible dynamic systems have been the subject of research and development for many years. One area of interest is exact Laplace domain solutions to the differential equations that describe the linear elastic deformation of idealized structures. These solutions can be compared to and complement finite order models such as state-space and finite element models. Halevi (2005, “Control of Flexible Structures Governed by the Wave Equation Using Infinite Dimensional Transfer Functions,” ASME J. Dyn. Syst., Meas., Control, 127(4), pp. 579–588) presented a Laplace domain solution for a finite length rod in torsion governed by a second-order wave equation. Van Auken (2012, “Development and Comparison of Laplace Domain and State-Space Models of a Half-Car With Flexible Body (ESDA2010–24518),” ASME J. Dyn. Syst., Meas., Control, 134(6), p. 061013) then used a similar approach to derive a Laplace domain solution for the transverse bending of an undamped uniform slender beam based on the fourth-order Euler–Bernoulli equation, where it was assumed that rotary inertia and shear effects were negligible. This paper presents a new exact Laplace domain solution to the Timoshenko model for an undamped uniform nonslender beam that accounts for rotary inertia and shear effects. Example models based on the exact Laplace domain solution are compared to finite element models and to slender beam models in order to illustrate the agreement and differences between the methods and models. The method is then applied to an example model of a half-car with a flexible body.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Optimal Consensus State Estimator for a Piezoactive Distributed Parameter System;Journal of Dynamic Systems, Measurement, and Control;2016-06-08

2. Modeling of Flexible Robots With Varying Cross Section and Large Link Deformations;Journal of Dynamic Systems, Measurement, and Control;2015-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3