Simple Effective Conservative Treatment of Uncertainty From Sparse Samples of Random Variables and Functions

Author:

Romero Vicente J.1,Schroeder Benjamin B.2,Dempsey James F.3,Breivik Nicole L.4,Orient George E.5,Antoun Bonnie R.6,Lewis John R.7,Winokur Justin G.2

Affiliation:

1. Mem. ASME Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0828 e-mail:

2. Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0828 e-mail:

3. Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0840 e-mail:

4. Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0386 e-mail:

5. Mem. ASME Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0386 e-mail:

6. Mem. ASME Sandia National Laboratories, P.O. Box 969, Livermore, CA 94551-9042 e-mail:

7. Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0830 e-mail:

Abstract

This paper examines the variability of predicted responses when multiple stress–strain curves (reflecting variability from replicate material tests) are propagated through a finite element model of a ductile steel can being slowly crushed. Over 140 response quantities of interest (QOIs) (including displacements, stresses, strains, and calculated measures of material damage) are tracked in the simulations. Each response quantity's behavior varies according to the particular stress–strain curves used for the materials in the model. We desire to estimate or bound response variation when only a few stress–strain curve samples are available from material testing. Propagation of just a few samples will usually result in significantly underestimated response uncertainty relative to propagation of a much larger population that adequately samples the presiding random-function source. A simple classical statistical method, tolerance intervals (TIs), is tested for effectively treating sparse stress–strain curve data. The method is found to perform well on the highly nonlinear input-to-output response mappings and non-normal response distributions in the can crush problem. The results and discussion in this paper support a proposition that the method will apply similarly well for other sparsely sampled random variable or function data, whether from experiments or models. The simple TI method is also demonstrated to be very economical.

Publisher

ASME International

Subject

Mechanical Engineering,Safety Research,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3