The UGKS Simulation of Microchannel Gas Flow and Heat Transfer Confined Between Isothermal and Nonisothermal Parallel Plates

Author:

Dai Lianfu1,Wu Huiying1,Tang Jun1

Affiliation:

1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Abstract The unified gas kinetic scheme (UGKS) is introduced to simulate the near transition regime gas flow and heat transfer in microchannel confined between isothermal and nonisothermal parallel plates. The argon gas is used and its inlet Knudsen number (Knin) ranges from 0.0154 to 0.0715. It is found that: (1) both microchannel gas flows under isothermal and nonisothermal parallel plates display a trend of speed acceleration and temperature decrease along flow direction, for which the microscopic mechanism explanation is first proposed; (2) inlet gas streamlines under nonisothermal plates condition deviate from the parallel distributions under isothermal plates condition due to the dual driving effects of pressure drop along flow direction and temperature difference along cross section; (3) gas temperature, pressure, density and viscosity distributions along cross section under nonisothermal plates condition deviate from the parabolic distributions under isothermal plates condition, while the gas velocity keeps the parabolic distribution due to the effect of Knudsen layer; (4) as channel height increases or channel length and gas molecular mean free path decrease, the gas temperature distribution along cross section under nonisothermal plates condition tends to transition from linear to curve one due to the decreasing effect of heat transfer along cross section and increasing effect of gas acceleration along flow direction, this transition from linear to curve one becomes more obvious along flow direction. (5) the gas velocity under nonisothermal plates condition decreases with the increase of inlet gas temperature (Tin), lower plate temperature (Tl) and Knin, while the gas temperature increases with the increase of Tin, Tl and Knin.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3