Rarefaction Effect, Heat Transfer, and Drag Coefficient for Gas Flow Around Square Cylinder in Transition Flow Regime

Author:

Dai Lianfu1,Wu Huiying1

Affiliation:

1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Abstract In this work, rarefaction effect, heat transfer, and drag coefficient for gas flow around a square cylinder in transition flow regime are numerically studied using unified gas kinetic scheme (UGKS). To reduce computational cost, a mirror symmetry boundary treatment for UGKS is proposed and applied in this study. It is found that: (1) velocity slip is not obvious on upwind and downwind surfaces of square cylinder due to the tangential gas flow being weak in these surfaces; (2) with the increase of local Knudsen number, velocity slip on upper surface always increases, but temperature jump can decrease, which indicates that Knudsen number is not the decisive parameter to characterize temperature jump; (3) the heat transfer between gas and square cylinder enhances with the increase of inflow Knudsen number and cylinder temperature due to the increase of temperature jump and deteriorates with the increase of inflow Mach number on account of gas stagnation; and (4) the drag coefficient increases with the increase of inflow Knudsen number, the decrease of inflow Mach number, and the increase of cylinder temperature. To further predict the variation of average Nusselt number and drag coefficient, correlations for average Nusselt number and drag coefficient with inflow Mach number ranging from 0.05 to 0.3, inflow Knudsen number ranging from 0.1 to 10, and cylinder temperature ranging from 320 K to 380 K are proposed. This research can improve the understanding for mechanisms of gas flow and heat transfer in micro-electromechanical system (MEMS) devices.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3