Optimization of Solar Photovoltaic Fields

Author:

Weinstock D.1,Appelbaum J.1

Affiliation:

1. Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

Abstract

The design of stationary and single axes tracking collectors in a field consisting of rows of collectors involves relationships between the field and collector parameters and solar radiation data. In addition, shading and masking of adjacent rows affect the collector deployment of the field by decreasing the incident energy on the collector plane. The use of many rows, densely deployed in a given field, increases the field incident energy but also increases the shading. Therefore, there is an optimal deployment of the collectors in the field yielding, for example, maximum energy, minimum required field area, or other objectives. For photovoltaic collectors, the output energy depends on the module efficiency, the solar cell operating temperature, and on the scheme of the electrically interconnected modules. Series interconnection between the photovoltaic modules may have a significant effect on the output energy of the solar plant in event of shading. The present article deals with the optimal design of photovoltaic solar fields for stationary and single axes tracking collectors to obtain maximum annual output energy.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3