Effects of photovoltaic power station construction on terrestrial ecosystems: A meta-analysis

Author:

Zhang Yong,Tian Zhengqing,Liu Benli,Chen Shengyun,Wu Jihua

Abstract

The rapid increase in construction of solar photovoltaic power stations (SPPs) has motivated ecologists to understand how these stations affect terrestrial ecosystems. Comparing study sites, effects are often not consistent, and a more systematic assessment of this topic remains lacking. Here, we evaluated the effects of SPP construction on carbon emissions, edaphic variables, microclimatic factors and vegetation characteristics in a meta-analysis. We employed log response ratios (as effect sizes) to assess how control plots differed from those beneath solar photovoltaic panels. We found that SPP construction decreased the local air temperature and photosynthetically active radiation, while increasing air humidity, especially in grasslands. Furthermore, plant aboveground biomass and vegetation cover were also enhanced by SPP construction in grassland ecosystems. In farmland ecosystems, photovoltaic panel installation increased plant aboveground biomass, soil available phosphorus and soil pH, while reducing CO2 flux, plant species richness and vegetation cover in woodlands. Thus, while SPP construction had profound ecological impacts in terrestrial ecosystems, the direction and strength of these effects were largely dependent on ecosystem type. Most studies of SPP construction to date have focused on local microclimatic and plant diversity effects, but few studies have examined effects on ecosystem functions and services. Future assessments are needed of both the benefits and disbenefits of SPP construction across different ecosystems, to improve SPP site selection and adaptive management.

Funder

Fundamental Research Funds for the Central Universities

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3