Response of Vegetation and Soil Property Changes by Photovoltaic Established Stations Based on a Comprehensive Meta-Analysis

Author:

Chen Xiaoxin12,Chen Bojian23ORCID,Wang Yongdong1,Zhou Na1,Zhou Zhibin1

Affiliation:

1. National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

Abstract

Since the commencement of Sustainable Development Goals (SDGs), renewable energy has faced many challenges in reaching the target of SDGs, while the potential ecological impact on the environment cannot be ignored. The expansion of photovoltaic (PV) networks is raising concerns regarding the potential impact of large-scale PV power stations on local ecosystems. However, a comprehensive understanding of the specific responses of vegetation and soil factors to PV con-struction across different study locations is still lacking. To address this knowledge gap, we con-ducted a comprehensive meta-analysis of 28 studies internationally representing 31 observational points that evaluated 432 different vegetation and soil factor responses to the installation of PV power stations. We used piecewiseSEM to explore the responses of predictors/factors to the eco-logical environment. This study investigated the geographical and environmental conditions associated with PV construction and their responses to vegetation and soil factors, considering the advantages and disadvantages of PV power station construction in different ecosystems. The results indicate that (1) the response of the ecosystems to PV power station construction increased by 58.89%. Among these, the most significant improvement is in the desert, which accounts for 77.26%. Im-provement in temperate regions is 59.62%, while there is a decrease of 19.78% in boreal regions. Improvement in arid regions is 84.45%, while improvement in humid regions is 9.84%. (2) PV construction promotes SWC, vegetation diversity, vegetation coverage, and vegetation biomass, significantly enhancing vegetation productivity. (3) Among the different ecosystems, PV power station effects were most significant in deserts, while showing negative impacts on croplands. (4) Compared to below-panel treatments, between-panel treatments were more effective in improving ecological conditions. The study contributes to mitigating adverse effects associated with photovoltaic site development, offering insights into site selection planning for solar power stations and the advancement of the renewable energy sector.

Funder

Key Research and Development Projects of the Xinjiang Uygur Autonomous Region

“Silk Road Economic Belt” Ecological Construction Technology Demonstration National Base for International Science and Technology Cooperation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3