Automated Surface Defect Detection Using High-Density Data

Author:

Wells Lee J.1,Shafae Mohammed S.23,Camelio Jaime A.4

Affiliation:

1. Department of Industrial and Entrepreneurial Engineering & Engineering Management, Western Michigan University, Kalamazoo, MI 49008 e-mail:

2. Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061;

3. Production Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt e-mail:

4. Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061 e-mail:

Abstract

State-of-the-art measurement technologies, such as 3D laser scanners, provide new opportunities for knowledge discovery and development of quality control (QC) strategies for complex manufacturing systems. These technologies can rapidly provide millions of data points to represent a manufactured part's surface. The resulting high-density (HD) datasets have a great potential to be used for inspecting parts for surface and feature abnormalities. The current use of these datasets for part inspection can be divided into two main categories: (1) extracting feature parameters, which does not complement the nature of these datasets as it wastes valuable data and (2) an ad hoc inspection process, where a visual representation of the data is manually analyzed, which tends to suffer from slow, inefficient, and inconsistent inspection results. To overcome these deficiencies, this paper proposes an adaptive generalized likelihood ratio (AGLR) technique to automate the surface defect inspection process using HD data. This paper presents the performance results of the proposed AGLR approach with respect to the probability of detecting varying size and magnitude defects in addition to the probability of false alarms. In addition, a formal approach for designing an optimal AGLR inspection system is proposed. Finally, simulation results are presented and analyzed to showcase the performance gains of the AGLR approach versus a more traditional generalized likelihood ratio (GLR) approach.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3