Skin Imaging: A Digital Twin for Geometric Deviations on Manufactured Surfaces

Author:

Ghanbary Kalajahi Elnaz1ORCID,Mahboubkhah Mehran1,Barari Ahmad2ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Tabriz, Tabriz 5166616471, Iran

2. Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (Ontario Tech), Oshawa, ON L1G 0C5, Canada

Abstract

Closed-loop manufacturing is crucial in Industry 4.0, since it provides an online detection–correction cycle to optimize the production line by using the live data provided from the product being manufactured. By integrating the inspection system and manufacturing processes, the production line achieves a new level of accuracy and savings on costs. This is far more crucial than only inspecting the finished product as an accepted or rejected part. Modeling the actual surface of the workpiece in production, including the manufacturing errors, enables the potential to process the provided live data and give feedback to production planning. Recently introduced “skin imaging” methodology can generate 2D images as a comprehensive digital twin for geometric deviations on any scanned 3D surface including analytical geometries and sculptured surfaces. Skin-Image has been addressed as a novel methodology for continuous representation of unorganized discrete 3D points, by which the geometric deviation on the surface is shown using image intensity. Skin-Image can be readily used in online surface inspection for automatic and precise 3D defect segmentation and characterization. It also facilitates search-guided sampling strategies. This paper presents the implementation of skin imaging for primary engineering surfaces. The results, supported by several industrial case studies, show high efficiency of skin imaging in providing models of the real manufactured surfaces.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3