Property-Graded Stainless Steel 316L by Selective Laser Melting: Characterization & Design

Author:

Parikh Yash1,Kuttolamadom Mathew2

Affiliation:

1. Texas A&M University Department of Mechanical Engineering, , College Station, TX 77843

2. Texas A&M University Department of Engineering Technology and Industrial Distribution, , College Station, TX 77843

Abstract

AbstractThe purpose of this research work is to characterize and inform the design of (mechanical) property-graded bulk structures made from a single metallic alloy via a laser powder bed fusion (LPBF) process, with an end goal of creating repeatable/reproducible functionally-graded additively manufactured (FGAM) parts. This paper specifically investigates the manufacture of stainless steel (SS) 316L structures via a pulsed selective laser melting (SLM) process, and the underlying causes of property variations (within a functionally-acceptable range) through various material characterization techniques. For this, a design of experiments spanning the volumetric energy density (VED) based process parameter design space was utilized to investigate the range of functionally-acceptable physical/mechanical properties achievable in SS 316L. Five sample conditions (made via different process parameter combinations) were down-selected for in-depth microstructure analysis and mechanical/physical property characterization; these were suitably selected to impart a wide and controllable property range (209–318 HV hardness, 90–99.9% relative density, and 154–211 GPa modulus). It was observed that property variations resulted from combinations of porosity types/amounts, martensitic phase fractions, and grain sizes. Based on these findings, property-graded standard test specimens were designed and manufactured for further investigation—tensile specimens having a monotonic hardness change along its gauge length, four-point bending specimens with varying elastic moduli as a function of the distance from the neutral axis, and Moore’s rotating beam fatigue specimens with moduli variations based on the distance from the center. Altogether, this work lays the foundation for understanding and designing the local and global mechanical performance of FGAM bulk structures.

Funder

Division of Engineering Education and Centers

Oak Ridge Institute for Science and Education

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3