Optimization of Process Parameters in Laser Powder Bed Fusion of SS 316L Parts Using Artificial Neural Networks

Author:

Theeda Sumanth1ORCID,Jagdale Shweta Hanmant1,Ravichander Bharath Bhushan1,Kumar Golden1

Affiliation:

1. Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA

Abstract

Additive manufacturing is rapidly evolving and revolutionizing the fabrication of complex metal components with tunable properties. Machine learning and neural networks have emerged as powerful tools for process–property optimization in additive manufacturing. These techniques work well for the prediction of a single property but their applicability in optimizing multiple properties is limited. In the present work, an exclusive neural network is developed to demonstrate the potential of a single neural network in optimizing multiple part properties. The model is used to identify the optimal process parameter values for laser power, scan speed, and hatch spacing for the required surface roughness, relative density, microhardness, and dimensional accuracy in stainless steel parts. In-house-generated experimental data are used to train the model. The model has seven neurons in the hidden layer, which are selected using hyperparameter optimization. K-fold cross-validation is performed to ensure the robustness of the model, which results in a mean squared error of 0.0578 and R2 score of 0.59. The developed model is then used to predict the optimal process parameters corresponding to the user-required part properties. The model serves as a significant pre-processing step to identify the best parameters before printing, thus saving time and costs for repeated part fabrication. The study provides more insights into the usage of a single artificial neural network for the optimization of multiple properties of printed metal parts.

Funder

University of Texas System STARs

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3