Graphic Transfer Matrix Method for Kinetostatic and Dynamic Analyses of Compliant Mechanisms

Author:

Yuan Lei1,Ling Mingxiang2,Lai Jianhao1,Li Hai1,Zhang Xianmin1

Affiliation:

1. South China University of Technology School of Mechanical and Automotive Engineering, , No. 381, Wushan Road, Guangzhou 510800 , China

2. South China University of Technology School of Mechanical and Automotive Engineering, , No. 28, Mianshan Road, Guangzhou 510800 , China

Abstract

Abstract Kinetostatic and dynamic analyses of compliant mechanisms with complex configurations continue to be an attractive issue for obtaining a process-concise and result-accurate solution. In this paper, the transfer matrix method (TMM) is improved for a unified linear kinetostatics and dynamic modeling of compliant mechanisms with complex serial-parallel configurations in an oriented graphic way. In detail, the transfer matrices of typical building blocks commonly used in compliant mechanisms are summarized and derived. Then, a graphic transfer matrix modeling procedure capturing both the kinetostatics and dynamics of general compliant mechanisms is introduced. The displacement amplification ratio, input/output stiffness, parasitic error, natural frequencies, and frequency response of a typical compliant microgripper and a planar parallel three-degrees-of-freedom (3DOF) nanopositioner are calculated with such a graphic transfer matrix method. The advantages of the proposed modeling method lie in its convenience and uniformity in formulating both the kinetostatic and dynamic behaviors of a class of compliant mechanisms with distributed and lumped compliances in a transfer matrix manner, which has minimal DOF and is easily programmed.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3