Affiliation:
1. Northeast Forestry University
Abstract
The equilibrium moisture content and specific gravity of Uludag fir (Abies bornmüelleriana Mattf.) and hornbeam (Carpinus betulus L.) woods were investigated following heat treatment at different temperatures and times. Two prediction models were established based on the Aquila optimization algorithm back-propagation neural network model. To demonstrate the effectiveness and accuracy of the proposed model, it was compared with a tent sparrow search algorithm-back-propagation network model, a back-propagation network model, and an artificial neural network. The results showed that the Aquila optimization algorithm back-propagation model reduced the root mean square error value of the original back-propagation model by 87% and 97%, respectively, and the decision coefficients (R2) of the equilibrium moisture content and specific gravity were 0.99 and 0.98; as such, the model optimization effect was obvious. Therefore, this paper provides an effective method for the optimization of the process parameters (such as heat treatment time, temperature, and air pressure) in wood heat treatment and related fields.
Subject
Waste Management and Disposal,Bioengineering,Environmental Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献