Prediction of the equilibrium moisture content and specific gravity of thermally modified wood via an Aquila optimization algorithm back-propagation neural network model

Author:

Chen Yao1,Wang Wei1,Li Ning1

Affiliation:

1. Northeast Forestry University

Abstract

The equilibrium moisture content and specific gravity of Uludag fir (Abies bornmüelleriana Mattf.) and hornbeam (Carpinus betulus L.) woods were investigated following heat treatment at different temperatures and times. Two prediction models were established based on the Aquila optimization algorithm back-propagation neural network model. To demonstrate the effectiveness and accuracy of the proposed model, it was compared with a tent sparrow search algorithm-back-propagation network model, a back-propagation network model, and an artificial neural network. The results showed that the Aquila optimization algorithm back-propagation model reduced the root mean square error value of the original back-propagation model by 87% and 97%, respectively, and the decision coefficients (R2) of the equilibrium moisture content and specific gravity were 0.99 and 0.98; as such, the model optimization effect was obvious. Therefore, this paper provides an effective method for the optimization of the process parameters (such as heat treatment time, temperature, and air pressure) in wood heat treatment and related fields.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3