Affiliation:
1. College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
Abstract
Recently, Japan’s discharge of wastewater from the Fukushima nuclear disaster into the ocean has attracted widespread attention. To effectively address the challenge of separating uranium, the focus is on finding a healthy and environmentally friendly way to adsorb uranium using biochar. In this paper, a BP neural network is combined with each of the four meta-heuristic algorithms, namely Particle Swarm Optimization (PSO), Differential Evolution (DE), Cheetah Optimization (CO) and Fick’s Law Algorithm (FLA), to construct four prediction models for the uranium adsorption capacity in the treatment of radioactive wastewater with biochar: PSO-BP, DE-BP, CO-BP, FLA-BP. The coefficient of certainty (R2), error rate and CEC test set are used to judge the accuracy of the model based on the BP neural network. The results show that the Fick’s Law Algorithm (FLA) has a better search ability and convergence speed than the other algorithms. The importance of the input parameters is quantitatively assessed and ranked using XGBoost in order to analyze which parameters have a greater impact on the predictions of the model, which indicates that the parameters with the greatest impact are the initial concentration of uranium (C0, mg/L) and the mass percentage of total carbon (C, %). To sum up, four prediction models can be applied to study the adsorption of uranium by biochar materials during actual experiments, and the advantage of Fick’s Law Algorithm (FLA) is more obvious. The method of model prediction can significantly reduce the radiation risk caused by uranium to human health during the actual experiment and provide some reference for the efficient treatment of uranium wastewater by biochar.
Funder
Natural Scientific Foundation of Heilongjiang Province
Reference41 articles.
1. A novel functional porous organic polymer for the removal of uranium from wastewater;Bai;Microporous Mesoporous Mater.,2020
2. World Health Organization (2017). Guidelines for Drinking-Water Quality, World Health Organization. [4th ed.].
3. Yu, W., Guo, Y., Gao, B., and Liang, P. (2016, January 23–24). Research advances of chemical treatment of wastewater with low concentration of uranium. Proceedings of the 2016 4th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2016), Hangzhou, China.
4. A proton-exchange poly (acrylic acid) supramolecular hydrogel for ultrahigh uranium adsorption;Sun;J. Mater. Chem. A,2021
5. Uranium removal from mining water using Cu substituted hydroxyapatite;Szenknect;J. Hazard. Mater.,2020
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献