Peanut shell biochar’s effect on soil physicochemical properties and salt concentration in highly saline-sodic paddy fields in northeast China

Author:

Li Xuebin1,Che Weikang1,Piao Junlong1,Li Xiang1,Jin Feng1,Yao Tianxu1,Li Pingyue1,Wang Wei1,Tan Tan1,Shao Xiwen1

Affiliation:

1. Jilin Agricultural University

Abstract

Soil salinization is a major ecological threat to crop growth and production. Biochar addition can alleviate the negative impacts of saline-sodic stress in crops. Here, a two-year field experiment was conducted in a highly saline-sodic paddy field to evaluate the response of soil physico-chemical properties, ionic concentration, and rice yield to biochar applications. The soil was amended with peanut shell biochar as follows: zero biochar (B0), 33.75 t ha−1 (B1), 67.5 t ha−1 (B2), and 101.25 t ha−1 (B3). Biochar significantly reduced soil bulk density (BD), while it markedly increased total porosity (TP) and saturated hydraulic conductivity (Ks). Furthermore, biochar markedly decreased the Na+ concentration, Na+/K+ ratio, Na+/Ca2+ ratio, HCO3-, and CO32- while it increased the concentrations of K+, Ca2+, and Mg2+. Biochar significantly decreased the electrical conductivity of soil saturation extract (ECe). The exchangeable sodium percentage (ESP) of B1, B2, and B3 were 53.6%, 62.3%, and 71.0% lower, respectively, than that of B0, and the corresponding decrease in sodium adsorption ratio (SARe) was 51.2%, 58.1%, and 60.5%. Biochar had no effect on the soil pH but significantly increased the soil cation exchange capacity (CEC). The rice biomass yield, grain yield, and harvest index significantly increased after biochar application.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3